cmerratin
 School of sem eman teanstiny

 OCEANOGRAPHY

STUDIES OF JUVENILE SALMONIDS OFF THE OREGON AND WASHINGTON COAST, 1981
by
W. W. Waketiold, J. P. Fisher and W. G. Pearcy

Oregon State University Sea Grant Colloge Program

Reterence 81-13

OREGON STATE UNIVERSITY
\qquad
DAN GOFY DRY

Correction to Oregon State University, School of Oceanography, Cruise Report, Reference 81-13:
page 11, paragr. 4, Two major length modes are apparent for each month: 81-260 mm and $321-560 \mathrm{~mm}$, for May; 101-360 mm and 381-640 mm for June; 121-380 mm and 401-700 mm for July; 121-440 mm and 480-740 mm for August.

W. W. Wakefield, J. P. Fisher and W. G. Pearcy

School of Oceanography Oregon State University Corvallis, Oregon 97331

CRUISE REPORT

ACKNOWLEDGMENTS

This research was supported by the Oregon State University Sea Grant College Program and donations from Weyerhaeuser Co, and Northwest Marine Technology, Inc. The Northwest and Alaska Fisheries Center of the National Marine Fisheries Service generously loaned us the purse seine used on the first two cruises. We would also like to thank W. McNeil, R. Severson, V. Jackson and R. Laurence of Oregon Aqua-Foods, Inc. for cooperating in spraydying fish and conducting dye retention experiments and providing samples of release groups; D. Euchanan (Oregon Department of Fish and wilalife (ODFW)) for the loan of spray dying equipment; M. Dvenson (ODFW) for demonstrating fluorescent pigment marking techniques; Colin Harris (University of Washington) for the loan of equipment; the personnel of the ODFW Clackamas laboratory for their cooperation in speedily decoding coded wire tags and various agency tag coordinators for supplying release data on tag groups. Carl E. Bond (O.S.U., Fish and Wildlife Department) provided assistance in identification of Salmo. C. Reimers, M. Hall, D. Gushee, J. Kern, K. Jones, M. Willis, and D. Stein assisted in field and laboratory logistics. J. Sharpe typed the manuscript.

CRUISE PERSONNEL

MAY: J. Fisher, J. Shenker, W. Wakefield, D. Strehlow, w. Pearcy, F. Ratti, R. Stuart, D. Varoujean and C. Greenlaw.

JUNE: J. Fisher, J. Shenker, W. Wakefield, D. Schultz, W. Pearcy and D. Matthews.

JULY: J. Fisher, J. Shenker and W. Wakefield.

AUGUST: J. Fisher, J. Shenker, W. Wakefield, J. Kern, D. Gushee, D. Irons, G. Boehlert and F. Isaacs.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS i
CRUISE PERSONNEL i
INTRODUCTION I
MATERIALS AND METHODS 1.
Study Area 1
Fluorescent Pigment Marking Study 3
Seining 3
Zooplankton Sampling 4
Hydrographic Data 4
Processing the Catch at Sea 5
Laboratory Processing Procedure 6
RESULTS 7
Oceanographic Data 7
Salmonid Catches 7
Distribution and Abundance 10
Length-Frequency Data 11
Tag Returns and Movements 17
REFERENCES 20
APPENDIX A 21
APPENDIX B 22
APPENDIX C 34
APPENDIX D 38
APPENDIX E 48

INTRODUCTION

The Oregon State University School of Oceanography conducted purse seining surveys of juvenile salmonids in the ocean off Oregon and Washington during spring and summer 1981. The objectives of the field study were: 1) To collect information on the distribution and abundance of juvenile salmonids off Oregon and Washington; and to relate distributional patterns to oceanographic conditions and forage availability; 2) To make observations on fish movement through recovery of fish marked with coded wire tags and fluorescent pigment; 3) To collect juvenile salmonids for studies of growth, condition and food habits; 4) To ancess the composition, abundance, and food habits of nekton co-occurring with juvenile salmonids.

MATERIALS AND METHODS

Study Area
Four cruises were conducted during the spring and summer of 1981 (May 16-25, June 9-18, July 9-19, August 8-19). The study area extended from 10 miles (all distances in nautical miles) south of Coos Bay, Oregon to 20 miles north of the Columbia River mouth, a total distance of 204 miles (Figure 1). Transects covered three areas; Columbia River plume (4 transects), off Central Oregon (3 transects), and off Coos Bay (3 transects). Additional transects off Point Lookout and the Siuslaw River were also sampled.

Purse seine stations were routinely located along each transect line at the $37-\mathrm{m}$ depth contour, and at $4,7,10,15$ and 20 miles offshore. If salmonids were captured at 20 or more miles offshore additional stations were sampled at 5 miles intervals farther offshore until no salmonids were caught. At times, special sets were made in areas of sea bird feeding activity, fronts, plume boundaries, or in shallow ($<37 \mathrm{~m}$ depth) waters.

Figure 1. Location of transect lines sampled during spring and summer 1981.

Abstract

Some stations were sampled repeatedly to collect information on set to set variation in catch, including day-night differences in availability to capture and feeding activity.

Fluorescent Pigment Marking Study
Approximately 1.5 million coho smolts were marked with three different colors of fluorescent pigment prior to their transport from Oregon AquaFoods Inc.'s (OAF) Springfield hatchery, These pigment marked fish were released from both Coos Bay and Yaquina Bay OAF facilities (Appendix A).

Seining
Fish were collected using two different herring seines from two different commercial fishing boats. During the May and June cruises a 457 m long seine was used. The main section of this met was 800 meshes deep, and constructed of 32 mm mesh. A $73 \mathrm{~m}, 600$ mesh deep panel was attached to the end of the net towed by the seiner. An additional 30 mesh deep panel of 127 nim mesh was hung along the bottom of the net. 'The bunt: was constructed of 19 mm mesh. (All mesh measurements are stretch measure). This seine was fished from the F/V KRISTIN GAIL, a 32 m crab fishing and tendering vessel. The actual fishing depth of this net was not measured, but was estimated to be about 9 m .

During the July and August cruises, a $457 \mathrm{~m}-10 \mathrm{ng}$ geine was used. The main section of this net was 1800 meshes deep, and constructed of 32 mm mesh. The bunt was a panel of 32 mumesh, 37 m long and 1200 meshes deep. Additional 3 and $3 C$ mesh deep panels of 101 mm mesh ware hung along the top and bottom panels respectively. This net was fished from the F / V SOUPFIN, a 21 m drum seiner. Fishing depth was measured with a depth gauge to be about 15 m .

All sets were round hauls, where the net was laid out in a circle by seiner and skiff. The encircled surface area was sintlar for each set, about $16,600 \mathrm{~m}^{2}$. After the circle was completed, the purse line and seine were hauled in simultaneously and pursing was completed when half the length of the seine had been retrieved (half-purse sets).

Zooplankton Sampling
Zooplankton tows were made routinely at the 4,10 , and 15 mile purse seine stations, Additional stations were occasionally sampled. Sampling gear consisted of 70 cm bongos fitted with two cylindrical-conical plankton nets, constructed of 0.571 and 0.333 mm mesh Nitex. Each net had an open area ratio of $10: 1$ to insure a high filtration efficiency. TSK flow meters were mounted off-center in each net to measure the filtered water volume. A time-depth recorder was attached to the cable below the bongos. An otter-kite depressor was employed to obtain a wire angle of $50-65^{\circ}$.

Zooplankton tows were made along depth contours at a speed of about 3 knots. Tows were oblique (5 m steps) from the surface to the bottom (or to 150 m in deeper water).

Hydrographic Data
Surface salinity, temperature, chlorophyll-a and phaeo-pigment measurements were taken at each station. Salinity samples were analyzed in the laboratory with a Guildine model 8400 Autosalinomet申r calibrated to a seawater standard. Chlorophyll-a, an estimate of living plant matter, was measured from 500 ml water samples filtered through $0.3 \mu \mathrm{~m}$ glass fiber filters. Chlorophyll-a content of the material on the filters was estimated by a fluorometric measurements of 90% acetone extracts with a model-10

Turner Designs Fluorometer. The quantity of phaeo-pigments (chlorophyll degradation products) present in each sample was estimated by measuring fluorescence of acetone extracts before and after acidification (Strickland and Parsons, 1972). Light intensity was measured in foot candles with a Spectra Lumicon Light Meter at each station. Water transparency was estimated with a 30 cm Secchi disc. Bathythermograph measurements (temperature as a function of depth) were taken during the first two cruises.

Processing the Catch at Sea

Depending on its size and/or composition, the catch was either dipnetted from the bunt, lifted aboard in the bunt, or brailed aboard. Large catches of jellyfish (and fish) were brailed aboard with a 32 mm mesh brail (May, June) or a 51 mm mesh sock sewn into the bunt (July and August). The total volume of jellyfish was measured in containers of known volumes, and a subsample was processed to obtain data on species composition, abundance and size-frequency (bell diameter). For purposes of shipboard separation of fish, all salmon $\geq 400 \mathrm{~mm}$ fork length (FL) were considered adults, and those $<400 \mathrm{~mm}$ FL juveniles. Adult salmon were immediately transferred to holding tanks with circulating sea water. All juvenile salmon were placed in containers with MS 222 to reduce scale loss.

Juvenile salmon were identified to species, measured to the nearest millimeter (FL), individually wrapped in plastic bags along with a label identifying set number, species and length, and frozen. Occasionally a subsample of salmon was preserved in 10% formalin to provide information on differences between freezing and formalin preservation on the condition of stomach contents.

Blood and gill tissue were periodically obtained from juvenite salmon
for a study of blood osmolality and gill ATPase activity by John oh of Oregon Aqua Foods, Inc.

Adult salmon were anesthesized with MS 222 , identified, measured, sampled for scales, and examined for adipose fin clips or other external marks. Fishes with missing adipose fins were killedi. All other salmon $>400 \mathrm{~mm}$ FL were placed in a tank with circulating sea water and released after they recovered. To check for possible predation by adult salmon on juvenile salmon, a small number of adults were sacrificed for stomach content analysis when many juveniles were caught in the same set. Non-salmonid fishes and cephalopods were identified, counted, measured, and specimens were preserved for stomach content analysis.

Laboratory Processing Procedure
Each frozen (or preserved) juvenile saimon was given a serial number (collection year, seine set number and fish sequence number), weighed in its tared plastic bag, identified to species, remeasured, and examined for fluorescent pigment marks under ultraviolet light, adipose fin clip, and other marks. Scales from a subsample of up to ten fish of each salmonid species from each set were removed from the preferred area (see Scarnecchia, 1979) and mounted on gum cards in prepafation for future growth studies. Heads from individuals with adipose fin clips were removed and sent to the Oregon Department of Fish and Wildlife for coded wire tag removal and decoding.

After a subsample of up to ten fish of each salmonid species from each seine haul were partially thawed, stomachs were removed and preserved in formalin for food habits analysis; livers and viscer申l fat with attached organs were removed, weighed and frozen for lipid analysis; otoliths were
removed for growth studies; and carcasses were examined for bacterial kidney disease by the Department of Microbiology (OSU). Some whole salmon were saved for extraction of total lipids and fatty acids.

RESULTS

Oceanographic Data

Data on surface water temperature, salinity, secchi disc, and illumination are tabulated by seine set in Appendix B along with locations of 89 zooplankton collections. Chlorophyll-a and phaeopignent concentrations are listed in Appendix C.

Salmonid Catches

A total of 265 seine sets were made over a four month period from May through August. The seining effort varied from 63 to 68 sets for each 9 to ll-day cruise. Locations of sampling stations are shown in Figure 2 for each cruise. The June and August cruises included transects off southern oregon. A description of the location and time for each seine set is given in Appendix B.

Table 1 sumarizes the salmonid catch by species and cruise. A total of 2701 salmonids, representing seven species, was collected. Juvenile coho salmon were the most abundant salmonid in all months. Catches decreased over the four month period with $635,463,362$, and 360 occurring in May, June, July, and August respectively. Adult coho, juvenile chinook, and juvenile chum ranked second through fourth in abundance, while searun cutthroat and steelhead trout ranked fifth and sixth. A total of 49 adult chinook and 30 pink salmon were collected. With the exception of one individual, all pink salmon were greater than 400 mm fork length. Only one adult and four juvenile sockeye were collected.

Table 1, Summary of salmon catch, and coded wire tagged individuals in purse seine collections off oregon ane Washington

	Length Range (mM)	May Total	$\begin{gathered} \binom{\# N D ~ K}{C W T} \\ \hline \end{gathered}$	June Total	$\begin{gathered} \binom{\# N D}{C W T} \\ \hline \end{gathered}$	Juy Total	$\binom{\# A N D \%}{\text { CHT }}$	August Total	$\binom{\# \text { ANO } X}{\text { CHT }}$	Total	$\left.\begin{array}{c} \# \text { AND }{ }^{2} \\ \text { CWT } \end{array}\right)$
CaHO	≤ 400	635	(19, 3.00)	463	(14, 3.0\%)	362	(12, 3.3\%)	360	(9, 2.57)	1820	(54, 3.0\%
	> 400	59	($7,11.58$)	106	($3,2.8 \%$)	81	($8,9.9 \%$)	42	(2, 4,88)	288	$(20,6.9 \%)$
CHIMOOK	≤ 400	67	($4,6.08)$	37	($1,2.7 \%$)	75	(3, 4,0\%)	51	($1,1.9 \%$)	230	(9, 3.9\%)
	> 400	4	(0, 0.0\%)	18	(0, 0.0\%)	18	(0,0.0\%)	9	(1,11,1\%)	49	($1,2.0 \%$)
CHEN	≤ 400	39	(0,0,0\%)	30	(0, 0,0\%)	30	(0, 0.0\%)	34	(0, 0,0\%)	130	(0, 0.0\%)
PINK	≤ 400	0	(0, 0.0\%)	0	(0,0,0\%)	1	(0, 0.0\%)	0	(0, 0,0\%)	1	(0, 0.0\%)
	> 400	5	(0, 0,0\%)	1	(0, 0,0\%)	4	(0, 0,0\%)	19	(0, 0.0\%)	29	(0, 0.0\%)
SOCXEYE	≤ 400	1	(0,0,0\%)	3	(0, 0,0\%)	0	(0, 0.0\%)	0	(0, 0,0\%)	4	(0, 0.0\%)
	>400	0	(0, 0.0\%)	0	(0, 0.0\%)	1	($0,0.0 \%$)	0	(0, 0.0\%)	1	(0, 0.0\%)
STEH-EAD		32	($1,3.2 \%$)	25	($1,4.0 \%$)	2	(0,0.0\%)	1	($0,0.00$)	60	($2,3.3 \%)$
OTTHROAT		18	(0, 0.02)	13	(0, 0.0\%)	42	(0,0.0\%)	13	(0, 0.0\%)	86	(0, 0,0\%)
\# OF SEINE	SETS	$=$	63		67		68		67	265	

Distribution and Abundance

Areal variation in catch, and variation in catch of repeated sets at a single station are sumarized for juvenile coho, chinook and chum salmon, and steelinead and cutthroat trout in Appendix D. Juvenile salmonids were collected throughout the study area from 37 m water depth to the shelf brear (365 m). Seining stations were usually added at 5 mile intervals in an offshore direction until no salmonids were collected. The offshore extent of sampling generally reflects the westerly limit of salmonids in seine collections. With the exception of steelhead, salmonids were characteristically absent from collections in clear, "blue" oceanic water (Secchi disc reading $>15 \mathrm{~m}$). During May and June steelhead were most common in seine collections in clear water, 20 to 25 miles offshore in areas adjacent to the Columbia River. Steelhead were consistently found farther offshore than the other six salmonid species collected.

Monthly changes were evident in the catches of javenile coho salmon along the coast. In May, catches along transects in the vicinity of Yaquina Bay were twice as large as those along transects in the Columbia River plume area. This pattern was reversed during June through August, with juvenile coho being more abundant along the northern oregon and southern Washington coast. The July and August pattern is influenced by large catches off Tillamook Rock, 20 miles south of the Columbia River mouth.

Catches of juvenile chinook were largest in the vicinity of the columbia River plume during most months. The relative abundance of chinook was always low off Ti=lamook Rock when compared to areas to the north.

Juvenile chum salmon were collected in low numbers compared to coho salmon. They were usually more common in collections, along transects in
the Columbia River area than areas farther to the south.

Both steelhead and cutthroat trout were common in the May and June collections. Steelhead abundance in collections declined during July and remained low during August (Table l). Both searun trout were more common in the vicinity of the Columbia River than in areas south of rillamook Rock.

At stations where consecutive hauls were made, catches of juvenile salmonids were usually variable, but occasionally (August-Warrenton transect) quite similar. Examples of catches for repetitive sets over periods of up to rineteen hours are given in Table 2. Returning to sample a transect after a day or more yielded even larger dffferences in catches; e.g. 156 juvenile coho were collected along the Tillamook Rock transect on 20 May and a single juvenile was collected along the same transect four days later.

When juvenile coho salmon were abundant in collections at a station they were often abundant in collections at adjacent stations along the same transect.

Length-Frequency Data
Length-frequency distributions for all coho salman collected are shown in Figure 3. Two major length modes are apparent for each month: 81-260 mm and 321-650 mm for June; 121-380 mm and 401-740 for July; 121-440 and 441740 for August. The first mode for each month is mainly comprised of juvenile fish that entered the ocean in spring and sumer 1981 (sub-yearling if accelerated hatchery fish and yearlings if wild or other hatchery fish). The second mode is mainly comprised of adult fish which have spent one winter in the ocean. Fish at the upper end of the first mode or lower end of the second mode could be either adults or juveniles. Scales analysis
Table 2. Number of juvenile salmonids in purse seine collections at stations where repetitve sets were made.

COHO
 during spring and summer 1981. Stipple area represents the southern region (Cut Creek to Point Lookout), open histograms, the northern region (Tillamook Rock to Leadbetter Point). The maximurn number shown for each size group represents the sum of numbers caught in both regions.
will be employed to determine age of these intermediate-sized fish.

The shaded bars in Figure 3 represent coho collected south of the Siletz River (or Pt. Lookout in the case of August) while the open bars represent fish collected north of Tillamook Rock. The sizes of juvenile coho caught in May are similar in both regions, but in June, July and August the sizes of juvenile coho caught in the southern area are appre* ciably smaller than those caught in the northern area. The sizes sampled in the southern region (shaded histograms) do not increase appreciably among cruises, but remain centered around $160-180 \mathrm{~mm}$. In contrast, the mean sizes of fish collected in the vicinity of the Columbia River (open histograms) shift from about 160 mm to about 260 mm over the four month period.

Figure 3 shows the decline in numbers of juvenile coho collected during each month with a relatively constant seining effort, as well as an increase in the maximum size of adult coho between May and August.

Length distributions of chinook salmon show a modal peak at 200 m in May: 100 man in July and 140 mm in August (Figure 4). These July and August modes are comprised of fish collected almost exclusively from transects north of the Columbia River as only six juvenile chinook were captured south of Warrenton (Appendix D-2). These suall chinook in the July and August collections are probably subyearling hatchery and/or wild chinook from the Columbia River.

Length-frequency distributions of chum salmon show that the size mode advances from 10l-120 to 201-220 mm between May and August (Figure 5). The sample size is small, but as in the case of juvenile chinook, the number of fish collected in successive cruises south of Tillamook Rock declined.
CHINOOK

(43smaw) 人ONJOOByy

FORK LENGTH (mm)

Figure 5. Length-frequency distributions of juvenile chum salmon, cutthroat and steelhead trout collected off oregon and Washington during spring and summer 1981. Stippled areas represent the southern region (Cut Creek to Point Lookout), open histograms, the northern region (Tillamook Rock to Leadbetter Point). The maximum number shown for each size group represents the sum of numbers caught in both regions.

The length-frequency range for steelhead trout appears constant for May and June (Figure 5). Few steelhead were caught during July and August.

Modal lengths of cutthroat trout increased from $241-280 \mathrm{~mm}$ in May to $301-$ 320 mm in August (Figure 5). No individuals greater than 300 mm in length were collected during May, whereas the majority of individuals collected during July and August were greater than 300 mm in length.

Tag Returns and Movements
Preliminary information on 76 coded wire tags (CWT) from juvenile and adult salmonids is summarized in Appendix E-l and 2 , including tag codes, hatchery, release site and date, recovery site and date, and length at capture. A total of 54 CWT were recovered from juvenile coho, 20 from adult coho, 9 from juvenile chinook, 1 from adult chinook, and 2 from juvenile steelhead (Table 3). Ten of these tags have not yet been decoded and a few more fish with missing adipose fins may be found as the remaining fish are processed. The percentage of juvenile coho with CWT's in seine collections ranged from 3.36 in July to 2.5 in August (Table 1).

The north-south distance between point of ocean erttry and location of capture for CWT juvenile coho (open) and chinook (solid) is shown in Figure 6. Sixty-eight percent of the juvenile coho were collected south of their point of ocean entry. Many of the coho were captured 5 to 20 miles north or south of the Columbia River. Those fish collected along the Warrenton and Cape Disappointment transects were often captured within the Columbia River plume even though they were recordad as north or south of the Columbia River mouth. Since the Columbia represents the largest point source of juvenile salmonids and our purse seining effort was mainly south of the Columbia River, the capture of more fish to the south than

Table 3. Summary by agency of coded wire tag information for salmonids captured in purse seine collections off Oregon and Washington during spring and summer 1981.

	AGENCY*								
SPECIES	ODFW	WDF	OAF	ANAD	FWS	HOH	NMFS	IDFG	CDFG
Juvenile coho									
MAY	9	4	1	0	4	1	0	0	0
JUNE	4	1	2	5	0	0	0	0	0
JULY	3	1	4	1	0	0	0	0	0
AUGUST	1	1	2	1	1	0	0	0	0
Juvenile chinook	4	0	0	0	0	0	1	1	1
Steelhead	0	0	0	0	1	0	0	1	0
Adult coho	1	16	2	0	1	0	0	0	0
Adult chinook	0	1	0	0	0	0	0	0	0
Total	22	24	11	7	7	1	1	2	1

[^0]
the north of their river of ocean entry is expected.
Fish from the July and August cruises have not yet been examined for
fluorescent pigment marks. A total of 25 pigment-marked OAF juvenile coho were recovered from the May and June collections.

REFERENCES

Scarnecchia, D.L. 1979. Factors affecting coho salnon production in Oregon. M.S. thesis, Oregon State University, Corvallis, OR, 100 pp .

Strickland, J.D.H. and T.R. Parsons. 1972. A Practịcal Handbook of Seawater Analysis. Fisheries Research Board of Canada, Bulletin 167, Ottawa, 310 pp.

Appendix A. Marking and release schedule for fluorescent pigment marked coho smolts marked at Oregon Aqua-Foods Inc.'s Springfield hatchery, and released at oreAqua's South Beach (Yaquina Bay) and Coos Bay facilities.

Typed	Date Marked and Transported	No. Marked	Pigment Color	Release Site	Date Released
Holdover Yearling	4/21/81	80,083	Red	Yaquina	5/11/81
Programmed Yearling	4/26/81	$\begin{array}{r} 124,537 \\ 19,327 \end{array}$	Green Yellow	Yaquina	5/11/81
Programmed Yearling	4/27/81	48,826	Yellow	Yaquina	5/11/81
Programmed Yearling	4/28/81	$\frac{158,442}{431,215}$	Yellow	Yaquina	5/12/81
Zero-Age	5/22/81	114,055	Yellow	Coos	6/5/81
Zero-Age	5/23/81	68,736	Yellow	Coos	6/5/81
Zero-Age	5/30/81	266,125	Yellow	Coos	6/9/81
Zero-Age	5/13/81	321,445	Red	Yaquina	$\begin{aligned} & 6 / 10 / 81 ~ \& \\ & 6 / 13 / 81 \end{aligned}$
Zero-Age	5/26/81	290,450	Red	Yaquina	$6 / 15 / 81$
Zero-Age	$6 / 12 / 81$	103,056	Lt. Green	Yaquina	$6 / 26 / 81$
Zero-Age	$6 / 13 / 81$	102,247	Dk. Green	Yaquina	6/26/81
Zero-Age	6/13/81	90,632	Dk. Green	Yaquina	6/26/81
Zero-Age	6/14/81	91,109	Dk. Green	Yaquina	6/27/81
		447,855			

Station location and hydrographic data for purse seining cruises off oregon and washington during spring and summer, 1981.

Set. \#	Date	Transect	Distance offshore (n. mi)	$\text { start }{ }^{T i}$	Pursed	Depth (fathoms)	Latitude	Iongitube	$\begin{gathered} \text { Met } \\ \text { open to } \\ (0 \text { true }) \end{gathered}$	$\begin{aligned} & \text { Temp } \\ & \text { (ㄷ) } \end{aligned}$	$\begin{aligned} & \text { Salinity } \\ & (\% / \%, 0 \end{aligned}$	Illumination (fc)	Secchi (M)	$\begin{gathered} 200- \\ \text { plankton } \\ \text { tow } \end{gathered}$	Comments
kG 1	16 v	Newport	2.1	0640	0710	22	44.38 .4	12406.8	100	10.7	32.73	300	---	----	
2	16 V	Newfort	3.8	1020	1047	26	4439.5	12408.8	280	11.1	32.59	1100	---	KGB1	
3	16 V	Newport	6.9	1229	1307	36	4438.0	12413.4	240	12.1	29.13	1400	\cdots	----	
4	16 V	Newport	10.3	1425	1457	43	4438.4	12417.9	90	12.6	26.99	800	---	KGB2	
5	16 V	Newport	15.3	1703	1737	36	4438.3	12424.9	270	12.8	27.27	850	---	XGB 3	
6	16 V	Newport	10.1	1854	1925	42	4438.1	12417.6	275	12.4	27.50	340	---	KGB4	repeat set
7	16 V	Newport	10.2	2053	2125	42	4430.1	12417.7	---	12.9	25.30	0.3	---	kG85	repeat set
θ	16 V	Numport	10.0	2342	0020	43	4437.0	12418.1	310	12.6	26.15	<0.1	\cdots	KLPb6	repeat set
9	17 V	Newport	10.3	0425	0459	42	4438.5	12418.0	-*-	12.2	27.37	<0. 1	---	kga 7	xepeat set
10	17 V	Suwport	10.2	0702	0714	41	44 38.4	12417.8	90	12.3	---	375	---	KGB8	repeat set
11	17 V	H:wimet	10.1	0904	0935	41	4438.2	12417.7	210	12.4	27.32	1000	---	----	repeat set
12	18 V	Alsea	2.2	1157	1219	22	4424.8	12407.9	---	12.6	---	900	---	----	
13	18 V	Aleopa	4.3	1307	1332	27	4425.1	12410.8	225	13.0	27.66	2100	---	Kgr9	
14	18 v	Alsted	7.1	1453	1520	35	4425.0	12415.0	295	13.2	20.21	290	---	-	abortest
15	18 V	Al.ant	7.1	1714	1724	14	44.25 .1	$1: 415.1$	$1(4)$	12.9	27.98	1300	---	----	
16	$1 * \%$	A1.\%.4	10.0	1.1134	1901	3	44 23.0	124130	270	12.1	29.70	400	---	Kiflo	
17	180	Alses ${ }^{\text {d }}$	15.9	2051	2114	43	4.425 .1	12426.0	290	12.7	--	1.0	---	Kgall	
18	is ${ }^{\text {c }}$	Mi:nt	13. ${ }^{\text {i }}$	2305	2330	53	4425.0	12431.3	115	12.3	23.68	-0, 1	---	----	
19	19 V	Lincoln beach	1.7	0745	0813	20	4451.0	12405.0	20	12.3	28.21	300	---	----	
20	19 V	Lincoln Beach	3.8	0904	0929	33	4451.0	12408.0	---	12.7	27.41	1000	---	$\mathrm{KGBl2}$	
21	$1 \% \mathrm{~V}$	1.imeln beuch	7.0	1055	1120	54	4451.3	12412.5	---	13.2	28.88	2500	---	KGB13	
22	19 V	Lituopln beach	9.9	1248	1.313	68	4451.5	12416.6	170	13.6	27.79	3000	---	----	

Appendix B .

Set *		te	Transect	Distance offshore (n . tini)	${ }_{\text {Start }}{ }^{T i}$	Pursed	$\begin{aligned} & \text { Depth } \\ & \text { (fathoms) } \end{aligned}$		titude	Longi	itude	$\begin{gathered} \text { Net } \\ \text { open to } \\ \text { t" truel } \end{gathered}$	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { Salinity } \\ & (\% \% 0) \end{aligned}$	Illumination (fc)	Secchi (M)	$\begin{aligned} & \text { zoo- } \\ & \text { plank ton } \\ & \text { tow \# } \end{aligned}$	Comments
kg 23		v	Lincoln Beach	15.0	1430	1501	83	44	51.6	124	23.8	---	12.9	27.91	2500	---		
24		V	Lincoln beach	12.3	1626	--+	74	44	51.4	124	20.1	350	13.4	28.55	2300	---	-----	aborted
25	13	v	Tifkecinin Eeach	12.3	1\%	1733	74	44	50.8	124	20.2	---	----	-----	1800	---	KGE14	special sta.
26	19	v	Lincoln Beach	8.4	1928	1952	61	44	51.5	124	14.6	020	13.5	27.67	300	---	----.	
27	20	v	Tillamook Rock	1.9	0622	0657	20	44	55.0	124	00.9	310	13.3	27.54	1700	---	-----	
28		v	Tillamook Rock	$4.0{ }^{*}$	0742	0806	36	45	54.9	124	04.0	020	13.5	25.63	500	---	KGB15	
29	20	v	Tillamook rock	7.2	0919	0949	44	45	55.0	1.24	08.4	---	13.3	17.03	2800	--	KG816	
30	20	v	Tillamook Rock	10.0	1105	1130	57	45	55.1	124	12.5	000	13.2	26.21	600	-	KGB17-18	bird flock
31	20	v	Tillamook rock	15.0	1505	1535	74	45	55.0	124	19.7	260	13.5	26.59	7500	---	-----	
32	20	v	Tillamook Rock	20.1	1718	1740	80	45	55.0	124	27.0	190	13.4	27.61	500	---	kgbis	
33	20	v	Tillamouk rock	24.9	1933	1959	90	45	55.0	124	33.9	195	12.9	-	1500	---	------	
34	20	v	Tillumoak kock	22.7	2058	----	80	45	55.0	124	38.4	210	12.9	-----	0.6	---	-----	aborted
35	21	v	Warreitur	20.7	05\%	0559	71	41	1.0 .0	124	2 H .0	270	32.1	24.19	13:	-..		
36	21		warreiton	25.2	0315	0853	83	46	10.0	124	34.4	$0 \% 0$	12.4	29.25	400	---	-----	
37	21		Warrenton	25.2	0854	0917	83	46	09.7	124	34.3	100	-	----	700	---	zGEZ 2	repede set
38	21		Warrenton	29.2	1105	1129	106	46	10.0	1.24	41.4	270	12.a	30.74	1100	---	-----	
39	21		warrenton	20.9	1250	1328	71	46	10.1	124	28.5	220	12.4	-----	1800	---	-..--	edge of piume
40	21		Warrenton	15.2	1431	1456	60	46	10.0	124	20.1	---	13.4	22.96	800	-	KGB22	
41	21		warreilion	9.9	1630	1654	40	46	10.0	124	12.7	---	12.9	23.95	± 500	---	--	
42	21		Warrenton	6.9	1747	1809	26	46	10.0	124	08.3	---	13.2	24.26	1300	---	KCB23	
43	21		Warreator:	6.1	1850	1925	21	46	10.0	124	07.0	---	13.4	24.33	600	---	---	
44	22		C. Disumbintment	5.5	1119	1146	20		20.2	134	11.9	---	13.7	---.	2000	---	-----	
45	22	v	c. Di\%uturirtment	7.4	1242	1333	${ }^{2 R}$		20.0	124	14.1	120	13.8	15.20	3200	---	-----	

Appendix B.

Set \#	Dat	te	Transect	Distance offshore (n . mi.)	Start	Pursed	$\begin{aligned} & \text { Depth } \\ & \text { (fathoms) } \end{aligned}$	Latitude	Longitute	$\begin{gathered} \text { Net } \\ \text { open to } \\ \text { (o true) } \end{gathered}$	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Salinity $(\%)$	Iilumination (fc)	Secchi (M)	$\begin{aligned} & \text { zoo- } \\ & \text { plankton } \\ & \text { tow } \end{aligned}$	Comments
kG 46	22	v	C. Disappointment	9.7	1416	----	42	4620.1	12418.0	---	14.1	14.96	2100	---		aborted
47	22	v	C. Disulumintmat	15.9	1814	1841	60	46, 20.0	12425.4	120	12.9	29.35	900	---	KGB24	
48	22	v	c. Disappointment	20.0	2018	2041	73	4620.0	12432.2	---	13.0	15.20	250	---	------	
49	22	v	c. Disappointment	20.0	2103	2123	73	4619.6	12432.6	060	13.0	30.86	0.3	---	KGB25	repeat set
50	22	v	C. Disappointment	25.8	2315	2344	500	4620.0	12439.8	225	12.9	31.57	<0.1	---	----	
51	23	v	c. Disappointment	25.2	0019	0045	500	4619.8	12439.9	225	12.8	31.42	<0.1	---	-----	xepeat set
52	23	v	Leadbetter Pt.	25.2	0620	0650	350	4635.0	12441.0	000	12.8	30.86	300	---	-----	
53	23		Leadbetter Pt.	20.0	0755	0818	175	4635.0	12432.8	340	12.7	30.90	900	---	-----	
54	23		Leadbetter Pt.	15.0	0932	0956	52	4635.0	12425.6	270	12.9	29.59	1200	---	xge26	
55	23		Leadbetter Pt.	9.8	1131	1155	65	4635.0	12418.0	240	12.8	24.93	2100	---	KGE27	
55	23	v	Leadbetter Pt.	6.8	1326	1352	25	4635.1	12413.5	110	13.9	22.08	1100	---	xGB28	
57	23		Leadbetter Pt.	5.2	1506	1535	20	4635.0	12411.1	040	14.2	22.69	1200	---	KGB29	
58	24		Tillambok Sock	10.1	1016	----	57	4555.0	12412.8	350	12.8	29.24	650	---	-----	
59	24		Tillambok Rack	7.0	1140	1207	44	4555.0	12408.2	000	12.8	29.10	700	--	-	
60	24		Tillumamk larck	3.9	1516	--"	\%	4, 5\%,9	12403.7	0 HO	14.6	-----	740	---	----	aborted
61	24		Tillatrook Rock	3.4	2104	1530	35	455	12403.7	090	13.4	29.14	300	---	-----	.
62	2.4		Tillamusk Hesek	1.4	L6J9	14,43	21	43) 54.0	19460.9	0	1.16	27.50	${ }_{5}(1)$	---	-	
63	24		Tillamook Rock	15.0	1865	--	74	4555.0	12419.7	---	12.7	30.70	220	---	--->	
64	24		Delimmor	10.2	2232	2257	4.3	$46 \quad 05.0$	12410.4	150	13.2	27.81	<0.1	---	--.-	special sta.
65	25		Warrenton	15.0	0047	0110	60	4609.9	12420.1	010	13.7	23.41	<0.1	---	KGB30	
66	25		warrenton	10.0	0325	0349	38	4610.2	12412.3	100	13.3	25.33	<0.1	---	-----	
67	25		warreaton	6.0	0542	0609	21	4610.1	12407.0	000	13.3	25.53	35	---	----	
68	25		Warrenton	6.8	0643	0710	24	4610.0	12408.1	150	12.9	27.47	----	---	-----	epeat set

Appendix B．

Set \＃	Date	Transect	Distance offshore （n．mi．）	Start	Pursed	Depth （fathoms）	Latitude	Longitude	Net open to （a true）	$\begin{aligned} & \text { Tentp } \\ & \text { (} \left.^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { Salinity } \\ (0,0) \end{gathered}$	Illumi－ nation （fe）	Secchi （M）	$\begin{aligned} & \text { zoo- } \\ & \text { plankton } \\ & \text { tow \# } \end{aligned}$	Comments
KG 69	9 VI	Leadbetter Pt．	5.2	1052	1122	20	4635.0	12411.4	355	17.8	26.91	580	3.5	KGB31	
70	9 VI	Leadbetter Pt．	3.7	1255	1322	14	4635.0	12409.1	190	13.7	28.04	1700	4.0	－	
71	9 VI	Leadbetter Pt．	6.8	1417	1446	25	4635.0	12413.6	105	13.4	29.40	1400	4.0	－－－－－	
72	9 VI	Leadbetter Pt．	9.9	1550	1620	36	4635.0	12418.2	075	13.2	－－－－－	780	6.5	KGB32	
73	9 VI	Leadbetter Pt．	15.0	1804	1835	52	4635.0	124 25．4	085	23.7	32.092	450	7.0	KGB33	
74	9 VI	Leadbetter Pt．	20.7	2102	2108	110	4634.9	12433.5	075	13.6	31.47	29	－－	－	
75	10 VI	C．Disaipointment	20.0	0640	0708	73	4619.9	12432.5	075	13.4	31.19	230	9.0	－	
76	10 Yi	C．Disupaintment	15.2	0821	0900	65	4620.0	$124 \quad 25.0$	030	14.2	24.92	1200	－－－	rGe 34	
77	$10 \% 1$	C．Wisanmointment	10.0	1102	1132	44	4620.1	12418.3	090	14．8	20.11	900	2.5	KGB35	
78	10 VI	C．Disappointment	7.2	1329	1358	28	4620.2	12414.1	275	15.1	12.01	1500	1.3	＊－－－－	
79	20 VI	C．Disappointment	5.7	1452	1517	20	4620.0	12412.0	110	15.2	14.73	2200	1.5	KGB36	
80	10 VI	Warronton	5.0	1716	1748	20	4610.0	12407.1	140	15.1	23.28	1100	6.5	KGB37	
81	10 Vİ	Warrenton	7.2	1842	1907	27	4610.0	12408.6	070	15.2	24.97	200	5.0	－	
82	10 VI	Warrenton	20.0	2052	2114	40	4610.0	12412.8	080	15.0	26.76	75	－－－	KGB38	
93	11 VI	Warrenton	15， 2	Of． 38	0714	90	4645.9	12420.3	いら＂	14．${ }^{3} 3$	25.21	290	7.0	K6iP39	
84	11 VI	Warrenton	20.0	0917	6943	70	4610.0	12427.1	010	14．8	24.65	1500	7.0	－	
05	i1 V	Harsertoin	25.0	1112	1135	89	4 ELB	12434.3	050	14．2．	31.09	1000	10.3	－－－－－	
86	11 VI	Warreaton	25.0	1159	1220	84	4609.8	12434.2	310	24.3	29.69	－－－－	－－－	KGB40	repeat set
87	11 VI	Warrenton	30.4	1402	1422	200	4610.0	12441.6	190	14.4	31.67	1700	15.0	－－－－－	
1204	」」 v	Whtrabiabi	1．4．	1\％10	173	3.7	40． 30.6	124 L	741	15．3	25.70	1000	6.0	Ki：H4l	
69	11 1	Wattertos	15.0	1429	1931	9］	4610.0	12419.9	10）	15.1	26.11	400	－－＊	－－－－－	repeat set

Appendix B.

Set \#	Date	Transect	Distance offshore (n. mi.)	start	Pursed	Depth (fathoms)	Latitude	Long:	itude	Net open to (* true)	Tenap $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { salinity } \\ (\%, \%) \end{gathered}$	Illumination (fe)	Secchi (M)	Zooplankton tow \#	Comments
KG 90	11 VI	Warrenton	15.6	2030	2051	61	4610.0	124	20.8	130	15.0	26.09	140	6.0		t
91	11 VI	Warrenton	14.9	2322	2346	60	4610.6	124	20.0	120	15.2	25.50	---	---	KGE42	repeat set
92	12 VI	Tillaniok furci	25.0	0846	----	93	4555.0	124	34.1	160	13.8	31.32	600	11.0	------	
93	12 VI	Tillamook Rock	20.0	1014	1039	90	4555.0	124	27.0	070	14.2	28. 12	900	7.0	-----	
94	12 VI	Tillamook Rock	15.4	1205	1225	74	$45 \quad 55.0$	124	20.0	115	15.0	24.93	2800	7.5	KGB4 3	
95	12 VI	Tillamook fock	10.2	1400	1434	56	4555.0	124	12.5	215	15.2	25.50	3000	5.8	KGB44	
96	12 VI	Tillamook Rock	6.8	1605	1632	44	4555.0	124	08.1	190	14.8	27.33	9500	6.5		
97	12 VI	Tillamook rock	3.9	1719	1.802	36	4555.0	124	03.8	120	15.2	27.45	2500	6.5	KGE45	
98	12 VI	Tillamook Rock	1.7	2010	----	18	4554.6	124	00.3	070	14.4	28.74	3500	5.5	-----	
99	13 VI	Lincoln Heach	2.0	1213	1240	25	4451.4	124	05.5	080	14.9	28.32	3100	7.5	-	
100	13 VI	Lincoln Beach	3.9	1426	1451	34	4451.4	124	08.1	180	14.8	29.52	2900	7.0	K¢E46	
101	13 VI	Lincoln Beach	7.0	1632	1656	54	4451.4	124	1.2.6	110	14.7	29.73	2200	9.0	----.	
102	13 VI	Lincoln Eeach	10.0	1835	1902	68	4451.5	124	16.7	160	14.8	29.54	1200	7.5	KGB47	
103	13 VI	Lincoln beach	15.0	2109	2129	82	4151.5	124	23.0	085	14.7	29.77	17	---	KGB48	
104	14 VI	Newport	20.3	0648	0712	74	4440.0	124	31.7	230	14.4	29.35	230	10.0	----=	
105	14 VI	Newport	24.6	08.21	0839	152	4440.0	124	38.6	180	14.7	29.33	1300	8.0	--×--	
106	14 VI	Newport	15.0	1021	1044	49	4439.9	124	24.4	030	14.9	29.26	2600	13.0	KGB49	
107	$14 \mathrm{VI}$	Newport	$9.9{ }^{\text { }}$	1215	1239	41	4438.4	124	17.5	125	15.7	28.42	2900	---	kgb50	
108	14 VI	Newport	7.0	1352	1422	35	4430.4	124	13.4	190	15.4	28.72	2900	11.5	kg\% 51	
109	14 VI	Newport	3.7	1530	1558	26	4438.4	124	09.1	220	15.3	-----	2700	8.0	-----	
110	14 VI	Newport	2.0	1722	1747	22	4438.5	124	06.5	180	15.3	29.29	1700	5.0	----*	
111	15 Vm	Al sina	2.1	0738	0758	21	4425.0	124	08.0	1590	13.9	30.08	500	5.0	-----	
112	15 VI	Alsica	4.4	0912	0937	26	$44 \quad 25.0$	124	10.6	019	11.6	29.49	1700	7.5	xonsi	

Appendix B .

Set \#	Date	Thaticter	Distance offshore (n. mi.)	start	Pursed	Depth (fathoms)	1atititude	Lembi	itude	$\begin{gathered} \text { Net } \\ \text { opon to } \\ \text { (ox tue) } \end{gathered}$	Temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Salinity } \\ (\% \% \% a) \end{gathered}$	Illumination (fol	$\begin{gathered} \text { Secclii } \\ (M) \end{gathered}$	$\begin{aligned} & \text { Zoo- } \\ & \text { plankton } \\ & \text { tow } \# \end{aligned}$	Comuments
KG113	15 VI	Alsea	7.0	1110	1137	35	4424.8	124	14.9	090	15.7	29.47	2800	12.0	--	
114	15 VI	Alsea	10.0	1226	1251	37	4425.0	124	18.9	120	15.9	29.26	3000	12.5	KGB53	
115	15 vI	Alsea	15.0	1431	1450	42	4424.9	124	26.0	020	15.9	29.44	3000	10.0	KGB54	
116	15 VI	Alsea	20.1	1622	1644	55	4424.9	124	33.0	315	15.6	29.58	2700	15.0	-----	
117	15 VI	Alsca	20.1	1707	1729	54	4424.3	124	33.2	225	15.6	29.58	2000	----	-----	
118	16 vt	Cut Creek	19.8	0550	0619	160	4311.3	124	51.2	135	15.4	30.93	30	25.0	-----	
119	26 VI	Cut Creek	15.0	0740	0810	135	4311.3	124	44.5	135	15.4	30.05	380	23.0	K6855	
120	16 VI	Cut Creek	10.0	1010	2038	67	4311.3	124	37.5	270	14.8	30.20	1400	12.0	KGB56	
121	16 vi	Cut Crcek	7.0	1301	1331	46	4311.3	124	33.6	270	14.8	30.12	2800	10.0	-	
122	1ri VI	cut creek	3.7	1441	1509	33	4311.4	124	29.6	-	12.8	31.41	2600	12.8	KCB57	
123		Cut: Creek	2.0	'1540	1704	22	4311.4	124	26.7	0	12.8	31.79	1900	6.0	-----	
1.24	16 vI	cinel: blay	2.9	1954	2014	22	4. 21.5	12.4	24.4	129	13.6	30.76	450	4.0	-----	
125	16 V	Cones biy	5.4	2188	21.50	${ }^{51}$	4121.5	224	28.4	285	1.4.1	30.46	0.1	----	-	
L.\%	1/ v1	וнו".	1.1	(3) $\mathrm{y}^{\text {a }}$	10:	31	4131.1	194	11.7	$1{ }^{\prime}$	14.4	11.0\%	\%	:. $\%$	-..	
427	Wivi	--. - - пини	1.9	$\cdots+74$		- 7	\cdots - ${ }^{\text {H }}$ H:7	124	土5. ${ }^{\text {H }}$	-1.3:34	14.2	- 30.45	620	6.5	--	
128	17 vt	1anue	1.4	0435	0901	1:5	4331.4	124	16.9	0	--	-----	----	----	-	
129	17 v/	Lune	1.0	1034	1059	12	4331.7	124	25.8	225	13.3	30.70	2600	7.0	kge58	
130	17 VI	Dune	7.2	1252	1319	60	4332.5	124	24.5	225	13.4	31.01	3000	11.0	KGB59	
131	17 VI	Siuslaw River	1.9	1840	1911	25	4401.2	124	11.0	295	14: 3	29.87	220	4.0	-----	
132	17 VI	Siuslaw River	4.0	2001	2032	34	4401.0	124	13.7	270	14.9	30.32	200	7.0	-----	
133	18 VI	Newport	2.3	0501	0530	22	4438.3	124	06.9	090	14.6	29.80	0.2	----	-----	
134	14VI	wiwhort	1.0	0546	0726	26	4433.3	124	09.6	---	14.3	30.14	276	5.5	-----	
135	18 vI	Nempret	5.6	0917	0950	31	44 39.4	124	11.5	000	14.6	29.20	350	8.0	-----	et on fro

Appendix B .
JULY CRUISE

Set \#	Date	Transiect	Distance offshore (in. mi.)	Start	Pursed	Denth (fathoms)	Latitude	Long itude	Net cpen to (${ }^{\circ}$ truc)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Salinity } \\ \left(\% /{ }_{00}\right) \end{gathered}$	$\begin{aligned} & \text { M11umi- } \\ & \text { nation } \\ & \text { (fe) } \end{aligned}$	Secchi (M)	$\begin{gathered} 200- \\ \text { plankton } \\ \text { tow } \end{gathered}$	Comments
SF140	9 VII	Leadbetter Point	5.2	1115	1136	20	4635.1	12407.5	200	13.9	-----	2500	4.0	----	
141	9 VII	Leadbetter Point	8.6	1253	2317	30	4615.0	12412.3	200	13.8	31.56	900	4.5	----	
142	9 VII	Leadbetter Point	20.5	1412	1433	37	4535.0	12419.8	220	14.7	31.41	1000	4.5	SFBl	
143	9 VII	Leadbetter Point	15.0	1655	1714	55	4635.0	12425.5	280	14.7	31.61	2000	4.5	----	
144	9 VII	Leadbetter Point	20.8	1826	1844	122	4635.4	12433.8	260	14.7	31.32	1200	9.5	--"*	
145	9 VII	Leadbetter Point	14.9	2029	2046	52	4635.0	12425.3	250	14.2	31.41	150	5.5	--"	
146	9 VII	Leadbetter Point	11.3	2149	2212	39	4635.0	12420.0	240	13.7	31.81	0.1	---	---	
147	10 VII	C.Disappointment	5.7	0750	0809	20	4620.1	12411.9	220	15.3	11.65	540	2.0	----	
148	10 V11		6.7	0927	0946	20	4620.4	12413.4	230	14.8	13.86	450	2.0	--	
149	11 VII	Warrentor	6.0	0906	0926	22	4610.2	12407.0	230	13.7	27.17	900	---	----	
150	11 VII	Warrenton	7.8	0958	1006	28	4609.7	12409.0	180	13.4	26.31	1800	2.0	----	
151	11 VII	Warrenton	6.3	1111	1129	29	4610.2	12408.8	230	14.2	26.09	2000	3.5	----	
152	11 VII	Warrenton	13.5	1257	1314	56	4610.9	12418.0	200	17.8	18.15	2500	2.0	----	
153	11 VII	warrenton	9.9	1435	1441	40	4610.2	12412.6	230	16.9	22.20	9500	2.5	----	
154	11 V11	warrenton	9.9	1510	1530	40	4679.8	12422.4	220	14.6	26.34	2500	2.0	SFP2-	repeat set
155	11 VII	Wasturitors	17.2	1820	----	70	4612.2	12424.4	220	17.1	18.56	1200	2.5	----	aborted
156	11 VII	Warfunton	17.2	1908	1927	71	4612.2	12424.4	280	15.8	20.89	1200	2.5	----	$\begin{aligned} & 2.3 \mathrm{~min} \text { of } \mathrm{f} \\ & \text { transect } \end{aligned}$
157	11 V1t	Watrattom	$2!5.4$	2013	2114	260	$46.09 . \mathrm{H}$	124 14.6	210	14.8	31.18	50	---	----	
158	12 VII	C.Disappobiturat	24.7	0621	0641	450	4620.2	12439.3	140	14.'	31.29	200	7.3	----	
159	12 VII	C.Disappeintment	20.4	0758	0818	74	4619.9	12433.1	230	14.7	16.45	1000	3.0	----	
160	12 VII	C. Disammintment	15.3	0919	0939	6.4	4620.7	12425.7	180	15.4	13.36	1000	2.0	SFB3	
161	12 V 1		10.0	1145	1214	41	4620.4	12418.2	220	16.2	14.67	3100	2.5	SFB4	

Appendix B.

Set \#	Date	Transect	Distance offshore (n. mi.)	Start	Pursed	Depth (fathoms)	Latitude	Longitude	$\begin{gathered} \text { Net } \\ \text { open to } \\ \text { (" erue) } \end{gathered}$	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right. \end{aligned}$	$\begin{gathered} \text { Salinity } \\ (\% / \% a) \end{gathered}$	$\begin{aligned} & \text { Tllumi- } \\ & \text { nation } \\ & \text { (fe) } \end{aligned}$	Secchi (M)	$\begin{gathered} 200- \\ \text { plankton } \\ \text { tow \# } \end{gathered}$	Comments
SF162	12 VII	C.Disappointment	9.6	1233	1251	41	4620.0	12417.8	+--	16.0	15.06	260	2.5	----	
163	12 VII	C.Disappointment	9.5	1317	1337	41	4519.9	12417.5	250	16.4	14.94	200	---	----	
164	12 vir	c. Disappointmatt	7.2	1459	1516	30	4619.9	12414.4	270	16.4	16.55	1600	---	---	
165	12 VII	c. Disappoistment	7.2	1530	-	30	4629.7	12414.4	200	16.7	16.55	3300	---	----	aborted
166	12 VII	c. Disappointment	7.1	1601	1611	29	4619.2	12414.4	---	26.7	16.48	2600	---	----	repeat set
167	12 VII	C. Disappointment	5.7	1709	1725	20	4620.2	12412.0	250	17.3	15.21	2600	---	----	
168	12 VII	C. Disapinointment	10.0	2134	2153	44	4620.1	12418.4	210	16.4	14.01	0.3	---	----	
169	12 VII	e.disaprointment	10.0	2346	0005	44	4620.1	12418.4	230	15.0	17.16	<0.1	---	SFBS	repeat set
170	13 UIT	C. Disappointment	10.0	0231	0252	43	4620.0	12418.3	240	15.2	17.70	<0.1	---	----	aborted
171	13 VII	c. Disappointment	10.1	0329	0347	44	4619.9	12418.5	220	15.1	17.68	<0.1	---	SFB6	repeat set
172	13 VII	C. Cisappointment	10.1	0525	----	42	4620.0	12418.3	180	15.0	18.81	10	2.0	--	repeat set
173	13 vai	C. Disappointment	10.1	0612	0629	44	4620.0	12418.5	180	15.0	17.43	80	2.0	----	repeat set
174	13 VII	C. Disappointment	10.0	0659	0714	43	4619.9	12418.3	270	15.0	18.46	200	2.0	----	repeat set
175	13 VII	Tillamodok Rock	1.4	1525	1543	20	45.55 .4	12400.7	180	14.5	28.60	3000	3.0	----	
176	13 VII	Tillamook Rock	4.2	1633	1648	36	4559.9	124.04 .1	250	15.2-	20.69	1100-	3:5--	-	
177	13 VII	Tillamowk Rock	7.0	1725	1740	45	4555.0	12408.2	245	16.3	24.50	500	---	----	
178	13 VIS	Tillimmexk Hock	6.3	1.419	1835	45	45 55.4	124 u7.5	210	15.4	22.97	650	2.5	----	repeat set
179	13 VII	Tillimmok kock	7.0	1924	1944	46	4555.4	12408.2	210	16.3	22.76	300	3.0	--.*	repeat set
1 1\%	13 VII	Tillamook Rock	7.0	2132	2153	46	4555.4	12408.2	200	16.4	19.98	0.2	---	----	repeat set
181	14 VII	Tilismook Rock	7.0	0517	0535	45	4555.4	12408.2	180	15.1	27.05	1.0	2.5	--	repeat set
182	14 VII	Tillamook rock	9.8	0625	0643	57	4555.3	12412.5	230	14.9	23.34	140	3.0	SFB7	
183	14 VII	Tillamook Rock	15.4	0909	0926	75	4555.0	12420.2	240	15.8	17.46	1000	3.6	SFBb	
194	14 VII	Tillamook Rock	18.8	1026	1044	80	4555.0	12425.0	210	16.0	19.98	1300	7.5	----	

Appendix B.

Appendix B.

Set \#	nate	Transect	Distance offshore (n. mi.)	start	Pursed	Depth (fathoms)		titude	Long	i tude	Net open to (${ }^{\circ}$ true)	Temp (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Salinity } \\ (\% / 80) \end{gathered}$	Illumination (fc)	Secchi (H)	$\begin{aligned} & \text { zoo- } \\ & \text { plankton } \\ & \text { tow } \end{aligned}$	Comments
$51 / 234$	15V161	Tillamuok	6.3	1543	1602	45	45	55.7	124	07.9	---	14.2	31.97	800	4.5		
235	13 VIII	Tillamook	6.6	1644	1655	45	45	55.4	124	08. 2	240	14.2	31.97	900	---	-----	
236	13 VIII	Tillamook	4.2	1753	----	38	45	55.0	124	04, 2	240	14.6	32.15	400	5.5	SFB21	
237	13 VIII	Tillamook	2.8	2000	2019	30	45	54.9	124	02.3	230	14.4	32.14	58	5.5	----*	
238	14 VIII	Point Lookout	15.3	0723	0738	100	45	20.1	124	19.8	250	15.5	28.53	35	7.0	-----	
239	14 VIII	Point Lookout	10.3	0850	0906	83	45	20.2	124	12.8	280	14.5	31.79	----	9.0	-----	
240	14 VIII	Point Lookost	6.9	1026	1042	59	45	20.1	124	08.2	---	14.5	31.89	450	5.0	-----	
241	14 VIII	Point Lookout	3.9	1.118	1133	40	45	20.1	124	04.0	-	14.3	31.95	600	5.0		
242	14 VIII	Point Lookout	2.2	1206	----	24	45	19.4	124	01.1	220	13.5	32.36	650	3.5	-----	N
24.3	$15 \mathrm{VIP1}$	Newintt	1.11	1117	1135	20	14	3*2. 1	124	04.3	220	13.4	33.01	850	7.0	-----	
244	15 VIII	Newport	2.5	1216	1233	25	44	3 E .2	124	07.3	190	13.3	33.10	980	---	5F822	
245	15 VIII	Newport	7.2	1406	1423	36	44	36.3	124	13.8	230	13.0	33.12	1050	4.0	-	
246	15 VIII	Newport	10.4	1506	1522	44	44	38.4	124	18.2	220	12.5	33.00	980	3.0	SFB23	
247	15 VIII	Newport	14.9	1641	1659	36	44	38.2	124	24.7	240	13.9	32.34	820	5.0	SFB24	
249	15 VI古	Nowlert	± 9.7	1843	1901	72	44	30.2	124	31.8	200	15.0	31.86	740	5.5	--*--	
244	15 vili	Nownot	25.2	1952	2008	130	44	38. 3	124	38.8	---	15.0	31.66	260	5.5	-----	
250	15 visi	Newprort	7.2	2252	2308	37	44	38. 3	124	14.1	220	12.7	34.94	----	---	---w-	
251	16 VIII	Newport	6.9	01.43	0200	36	44	38.3	124	13.9	210	12.1	32.96	----	--	**	repeat set
252	16 vilit	Nownort	6.9	0430	0447	36	14	39.7	124	12.4	220	22.2	32.95	----	---	-*	repeat set
253	16 VIII	Newport	7.2	0803	0824	35	44	38.3	124	13.8	240	12.1	32.86	200	3.5	-----	repeat set
254	16 VIII	Lincoln Beach	1.3	1429	1448	20	44	51.7	124	04.4	240	13.2	33.18	1300	3.5	-*---	
255	16 Vifi	Lincolin Beach	4.3	1540	1556	35	44	51.6	224	06.0	240	12.9	33.05	900	5.0	SFB25	
256	16 VIII	Incoln Eesch	7.2	1652	----	55	44	51.4	124	12.B	220	12.5	32.97	950	---	-----	aborted

Appendix 8.

Set *	Date	Transect	$\begin{aligned} & \text { Distance } \\ & \text { offshore } \\ & \text { (n. thin.) } \end{aligned}$	$s_{\text {tart }}{ }^{\mathrm{Ti}}$	Pursed	$\begin{gathered} \text { Depth } \\ \text { (fathoms) } \end{gathered}$	Latitude	Longitude	$\begin{gathered} \text { Net } \\ \text { open to } \\ \text { (o true) } \end{gathered}$	$\begin{aligned} & \mathrm{Temp} \\ & \left.{ }^{\mathrm{o}} \mathrm{CO}\right) \end{aligned}$	Salinity	$\begin{aligned} & \text { Illumi- } \\ & \text { nation } \\ & \text { (fe) } \end{aligned}$	$\underset{(M)}{\text { Secchi }}$	$\underset{\substack{\text { zaoo- } \\ \text { plarkton } \\ \text { tow }}}{ }$	Comments
S7257	16 vili	Lincoln Beach	7.2	1716	1749	56	4451.4	12412.8	220	----	-----	650	---	--	
258	17 vin	L.irimoln 3each	10.0	0621	0638	62	4451.5	12416.7	200	12.6	32.92	13	4.5		
259	17 vifi	Lincoln Beach	15.7	0732	0747	${ }^{81}$	4451.5	12423.7	210	14.5	31.40	190	9		
260	17 viri	Alsea	19.9	11.08	1124	56	4424.8	12432.8	230	14.6	32.41	1100	13.0	---	
261	17 viII	Alsea	15.2	1217	1233	44	4425.2	12426.2	230	14.0	32.47	750	14.0	-----	
262	17 vili	Alsea	10.3	1353	1407	${ }^{38}$	4425.0	12419.6	230	13.2	32.66	1000	6.5	SFB26	
263	17 vili	Misea	7.0	1530	1546	36	4425.1	12414.7	---	13.3	33.40	800	---	SFB27	
3 m	19 (119	Ali, ${ }^{\text {a }}$	s."	16, 9	171:	\cdots	$142^{\prime}, 2$	12.416.1	200	13.1	17.40	(10)	4.:	STHA	
265	1\% V111	Al:eat	2.5	1814	1829	20	44.25 .2	124 198.6.	240	12.5	33.42	250	---	----	
266	18 viri	cut Crask	15.2	0926	0942	168	4311.4	12444.7	--.	15.0	32.41	400	14.0	--...-	
267	18 vilt	tut crow	1\%.4	203.4	----	70	4311.2	124.37 .9	---	14.1	32.72	390	17.0	-----	
268	18 vili	cut creek	6.7	1133	1149	44	4313.6	12433.0	220	13.3	32.89	1000	10.5	sf329	
269	18 viII	Cut creek	3.9	1318	1334	33	4311.5	12428.3	230	12.6	33.08	1700	11.5	---	
270	18 viil	Cut Cruek	2.2	1359	1414	25	4313.5	12427.0	220	11.7	33.44	1300	17.5	-----	
271	18 VIII	coos bay	5.4	1.567	1614	52	4321.4	12428.5	250	14.3	32.79	900	11.0	-----	
272	18 viri	worth Spit	1.5	1736	1752	24	4326.4	12419.0	220	12.7	32.97	580	10.0	--	
273	19 virt	siusiaw	18.6	0704	0721	78	4401.0	12433.5	240	14.5	32.32	60	16.0	--	
274	19 vitI	siuslaw	6.8	0915	0931	47	4401.0	12417.5	240	13.9	32.72	500	15.0	-----	
275	19 VIII	Siuslaw	3.6	1005	1021	32	4101.2	12413.2	---	13.5	32.65	700	13.0	-----	
276	19 viri	Siuslaw	3.8	1037	1052	32	4400.8	12413.4	---	13.5	32.66	780	13.0	---	
277	19 viir	Siuslaw	1.4	1118	1134	21	4401.0	12410.2	220	13.1	32.83	900	14.0	SFB30	

Appendix C. Surface concentration of chlorophyll-a and phaeo-pigments at purse seining stations off Oregon and washington during spring and summer 1981.

Set No.	$\begin{gathered} \text { Chlorophyll-a } \\ \mu \mathrm{g} / 1 \end{gathered}$	Phaeo-pignents Lg/l	Set No.	$\begin{gathered} \text { Chloroplyyll-a } \\ \text { pglt } \end{gathered}$	Phaeo-pigments $\ldots \quad \mu_{q_{1}}, 1$
XG - 1	3.65	0.62	34	-	-
2	-	-	35	1.29	0.43
3	3.92	0.50	36	0.15	0.07
4	1.15	0.20	37	-	-
5	0.63	0.35	38	0.20	0.04
6	2.31	0.52	39	2.12	0.32
7	-	-	40	3.06	0.61
8	-	-	41	1.78	0.31
9	-	-	42	1.57	0.42
10	0.69	0.32	43	1.39	0.19
11	0.76	0.46	44	2.40	0.90
12	2.17	0.48	45	2.93	0.74
13	1.04	0.27	46	2.33	0.84
14	2.21	0.54	47	1.02	0.20
15	-	-	48	-	-
16	5.93	2.73	49	0.18	0.08
17	0.77	0.22	50	0.18	0.04
18	-	-	51	-	-
19	3.36	0.52	52	-	-
20	0.83	0.22	53	0.22	0.14
21	0.32	0.13	54	0.93	0.10
22	0.27	0.08	55	3.44	0.43
23	0.26	0.09	56	3.36	0.37
24	0.19	0.06	57	-	-
25	-	-	58	0.54	0.17
26	-	-	59	0.73	0.17
27	1.38	0.19	60	0.63	0.15
28	1.91	0.08	61	0.67	0.06
29	1.87	0.73	62	1.04	0.13
30	2.12	0.01	63	0.29	0.10
31	1.91	0.13	64	1.46	0.25
32	1.42	0.19	55	$1 . \$ 5$	0.20
33	0.23	0.05	66	2.47	0.12

```
Appendix C. (continued)
```

Set to.	$\begin{gathered} \text { Chlorophyll-a } \\ \hline \end{gathered}$	Phaeo-pigments $\mu \mathrm{g} / 1$	Set No.	Chlorophyll-a Hg/L	Phaoo-pigments $\mu \mathrm{g} / \mathrm{l}$
KG - 67	-	-	102	0.46	0,16
68	$=$	-	103	0.36	0.22
69	5.30	0.58	104	-	-
70	4.98	0.30	105	0.18	0.108
71	3.04	0.17	106	0.29	0.14
72	1.07	0.27	207	0.46	0.13
73	0.46	0.18	109	0.36	0.05
74	0.28	0.09	109	1.17	0.28
35	0.37	0.12	110	1.44	0.17
76	2.02	0.39	111	3.94	0.90
77	3.22	0.01	112	1.06	0.16
78	3.71	0.99	113	0,32	0.614
79	4.13	1.16	114	-	-
80	1.48	0.29	115	1.16	$0 . \mathrm{C} 4$
81	2.43	0.13	116	0.33	0.08
82	0.60	0.13	117	0.29	0.06
83	0.34	0.13	118	0.09	0.07
84	0.57	0.20	119	0.05	0.04
85	0.49	0.08	120	0.22	0.08
86	-	-	121	-	-
87	0.21	0.01	122	6.04	0.42
88	0.32	0.10	123	4.22	0.6%
89	0.34	0.17	124	10.8	0.15
90	-	-	125	1.59	0.61
91	-	-	126	1.2\$	0.30
92	0.77	0.04	127	3.12	0.14
93	0.89	0.10	124	-	-
94	0.74	0.08	129	3.83	0.47
95	0.51	0.14	130	1.04	0.19
96	0.78	0.20	131	4. og	0.05
97	0.53	0.08	132	1.16	0.09
98	0.37	0.24	133	3.01	0.35
99	1.32	0.37	134	3.38	0.48
100	0.28	0.09	135	1.32	0.23
101	0.47	0.13			

Set No.	$\begin{gathered} \text { Chlorcphyll-a } \\ 1 \mathrm{~g} / 1 \end{gathered}$	Phaeo-pigments $\mu \mathrm{g} / 2$	Set No.	Chlorophyll-a ug/ 1	Phaeo-figments ug/1
SF-141	2.24	1.57	176	4.49	0.55
142	0.79	0.36	177	3. 2 \%	0.65
143	2.69	0.43	179	3.10	0.91
144	0.39	0.13	179	3.60	1.19
145	1.45	0.51	180	-	-
146	-	-	181	2.91	0.79
147	2.08	1.39	192	5.06	0.21
143	3.70	1.53	193	2.98	0.79
149	13.76	1.92	184	2.79	0.33
150	12.88	2.00	185	0.311	0.25
151	8.72	0.40	186	1.314	0.52
152	2.77	0.95	187	9.50	0.83
153	5.50	0.80	188	7.513	2.15
154	-	-	189	-	-
155	3.68	1.06	190	4.06	2.65
156	5.47	1.96	191	3.56	0.79
157	0.24	0.26	192	3.26	0.65
158	0.41	0.30	193	-	-
159	3.32	0.68	194	3.79	1.15
160	4.08	0.52	195	1.16	0.49
161	3.00	0.15	196	-	-
162	3,82	0.90	197	0.611	0.19
163	2.99	0.63	198	0.56	0.22
164	3.65	0.75	199	1.02	0.27
165	-	-	200	0.90	0.32
166	--	-	201	2.54	0.48
167	2.71	1.19	202	5.712	1.33
168	--	-	203	3. 97	O. 014
169	-	-	204	5.60	1.49
170	*	-	205	6.48	2.18
171	\checkmark	-	206	-	-
172	5.18	1.92	207	-	-
273	-	-	208	-	-
17.4	-	-	209	-	-
175	2.73	0.34	210	-	-

Appendix C. (continued)

Set No.	Chloraphyll-a $\mathrm{Hg} / 1$	Phaeo-pigments $\mu g / 1$	Set No.	Chlorophyll-a $\mu \mathrm{g} / \mathrm{L}$	Phaeo-pigments \qquad
SF-211	-	-	246	10.12	1.24
212	-	-	247	3.37	0.76
213	10.07	0.01	248	1.08	0.96
214	2.41	0.73	249	0.77	0.50
215	1.16	0.41	250	-	-
216	12.80	2.89	25.1	-	=
217	7.38	4.20	25.2	-	-
218	1.47	0.20	253	6.68	1.34
219	7.72	2.66	254	4.55	1.52
220	6.28	0.08	255	1.98	0.83
221	6.52	0.52	256	3.38	2.05
222	0.50	0.33	257	-	-
223	0.73	0.16	258	5.70	2.02
224	9.96	0.80	259	0.66	0.61
225	-	-	260	0.50	0.20
226	5.06	0.24	261	0.67	0.19
227	13.12	0.80	262	2.84	0.90
228	7.49	2.01	263	0.72	0.56
229	0.72	0.26	264	2.15	0.76
230	4.98	0.90	265	5.38	1.46
231	8.00	1.40	266	0.65	0.86
232	6.09	1.94	267	0.53	0.40
233	2.71	0.60	268	1.80	0.36
234	2.41	0.33	269	1.99	0.53
235	3.10	0.57	270	0.46	1.00
236	1.37	0.29	271	2.59	0.29
237	0.97	0.49	272	1.30	0.67
238	3.76	0.52	273	0.48	0.45
239	0.77	0.27	274	0.75	0.70
240	1.17	0.76	275	1.10	0.56
241	2.61	1.50	276	1.03	0.86
242	11.52	1.08	277	1.04	0.39
243	1.38	0.76			
244	1.04	0.76			
245	6.76	1.16			

Appendix D-1. Sumary of number of juvenile coho salmon in purse seine sets off Oregon and Washington ("-" indicates no seine set, "()" indicates number of adipose clipped fish).

MAY

JUNE

TRANSECT		MpLING DATE	$10-14$	$30 \mathrm{fm}$	$\begin{aligned} & -5 \\ & 4 \end{aligned}$	41	$S T A$ 10 mi	$\begin{aligned} & 0 \mathrm{st} \\ & 15 \mathrm{mi} \end{aligned}$	$20 \mathrm{mi}$		30 ml	OTHER (n.mi./4)
Colunain River Area:												
Feadibettet Pt.	9	VI 61	0	30	-	3	1	0	0	-	-	
Eape Digappointment	10	VI 11	-	89 (1)	-	47	7 (1)	0	0	-	-	
Warrenten	10511	VI 81	*	48(1)	$=$	2	12	50 (1)	29	1	0	
								1		3		
								10				
								$27(1)$				
								15 (3)				
Tilammook meck	12	VI O 2	-	0	0	1	0	2	0	0	-	
Yaquina Bay Areat												
Gincoln 3anch	13	VI 81	-	1	0	0	0	0	-	-	*	
Newport	14	VI 91	-	4	6.	0	E	0	14(1)	0	$=$	
	18	VI Bl	-	0	0	$=$	$=$	-	-	-	-	5.6,0
Mlsea Bry	15	V1 81	$=$	0	0							
Siuglar River Aftin:												
Siuslaw River	17	YI 81	-	3	0	\bullet	$=$	-	=	-	-	
Coos Bay Aras												
Dure	$17 \mathrm{VIC1}$		S14)	0	\rightarrow	0	-	-	-	$=$	-	
			$\begin{aligned} & 0 \\ & 1 \end{aligned}$									
coos Bay	16	VI 11	$=$	3 (1)	0	=	-	-	-	$=$	*	
Gut Creak	15	VI 81	$=$	0	0	0	0	0	0	*	-	

AUGUST

Appendix D-2. Sumary of number of juvenile chinook salnon in purse seine sets off Oregon and Washington ("-" indicates no seine set, "()" indicates number of adipose clipped fish).

JUNE

Appendix D-2.

JULY

TRANSECT		- DATE	10-14 fm	20 fm	4 III	7 mi	10. 3.	25 mi	20 ml	25 mi	30 mi		
Columbla River Areas:													
Leadbetter Pt.	9 VII 81		-	3	-	1	0	0	0	-	-		
			1				0						
Cape Disappointment		10 VII Bl		-	4	-	0	-	-	-	-	-	
		12 VII 81	-	6	-	$\begin{aligned} & 8 \\ & 3 \end{aligned}$	4	2	0	0	-		
							17						
							4						
							2						
							0						
							0						
							0						
							0						
Warrenton		11 VII 12	-	3	-	2	0	2	1	0	-	17.2/1	
						2111	0						
Tillambok fock	13614	4 VII 日l	-	1	0	0	0	1 (I)	0	0	-		
						1							
						0							
						0							

Yaquint bey Areat:

Lincoln Deach	18 VII EL_{1}	-	0	0	0	0	0	0	-	-	
Newport	17 VII 01	-	1	0	0	0	0	0	0	-	11.30 .11 .8
						0	0				12.3/0.11.8/0
Alnaa	18 VII 61	-	0	0	0						

AUGUST

Appendix D-3. Suumary of number of juvenile chum salmon in purse seine sets off Oregon and Washington ("-" indicates no seine set, "()" indicates number of adipose clipped fish).

JUNE

Appendix D-3.

JULY

TRANSECT		MPLING DATE	10-14.5m	20 mm		7 退	10 mi	15 mi	20 mi	25 mi	30 mi	OTHER (n.mi./*)										
Columbia Rivar Area;																						
Leadbater Pe.	9	VII 81	-	0	-	1	0	2	0	-	-											
							22	\square														
Cape Disappointment	10	vII Bl	-	0	-	0	-	-	-	-	-											
		2 VII B1	-	0	-	0	0	0	0		-											
				0	-	0	0			0												
							0															
							0															
							0															
							0															
							0															
							0															
							0															
Warrenton		vII B1	-	0	-	0	0	0	0	0	-	17.2\%										
						0	0															
Tillamook Pock		VII 61	-	0	0	0	2	0	0	0	-											
	13-14					0																
						0																
						0																
Yaquina Bay Arye: 0																						
Lincoln Beach	19	a VII BL_{1}	-		0	0						0	0	0	0	-	-					
				0																		
Newport	17-18	vII 81	$=$	0	0	0	0	1	0	0	-	11.3/0,11.6/3										
							0	0														
Alsea	18	VII $\mathrm{El}_{\text {d }}$	-	0	0	0	0	0	0	-	-											

AUGUST

Appendix D-4. Sumary of juvenile number of steelhead trout in purse seine sets off Oregon and Washington ("-" indicates no seine set, "()" indicates number of adipose clipped fish).

JUNE

Appendix D-4.

JULY

AUGUST

Appendix D-5. Sumary of number of cutthroat trout in purse seine sets off Oregon and Washington ("-" indicates no seine set, " () " indicates number of adipose clipped fish).

MAY

JUNE


```
Appendix D-5.
```


JULY

AUGUST

Appendix $E-1$.

	Appendix E-1		1. Summary of coded wire tag recoveries for juvenile during spring and summer 1981 (Preliminary data).						$\mathrm{ds} \mathrm{co}$	lected off	regon and	mashington
SPECILS		tag come	latchery	$\begin{aligned} & \text { ReLEASE } \\ & \text { STtE } \end{aligned}$	OCEAN Entry SITE	release DATE	RECOVERY DATE	$\begin{aligned} & \text { DAYS } \\ & \text { SINCE } \\ & \text { RELEASE } \end{aligned}$	$\begin{aligned} & \text { SEINE } \\ & \text { SET \# } \end{aligned}$	transect	HORTII-SOLST! Dhemance frolt ocean entrit	LENGTH AT recovery (man
Coho	79	05-07-39	Quinault I .	Hoh River	Hoh River	10-17 III 81	20 V81	64-71.	30	Tillamook Rock	110 s	143
Coho	79	07-21-13	Big creek	Big Creek	Columbia R.	20 IV 81	16 V 81	26	6	Newport.	97 s	146
Coho	79	07-21-17	BLg Creek	Big Craek	Columbia R.	20 IV 81	18 V 81	28	17	Alsea	110 s	142
Coho	79	07-21-18	Big Creek	Big Creek	Columbia R.	20 IV 91	22 V 81	32	47	Cape Dis.	5 n	154
coho	79	07-21-22	Big Creek	Hig Creek	Columbia R.	5 V 81	11 VI 81	37	91.	Warrenton	5 s	177
Coho	79	07-21-23	Big Creek	Big Creek	Columbia R.	8 VI 81	17 VII 81	41	190	Newport	975	186
Cohe	79	07-21-25	Big Creek	Big Creek	Columbia R.	Q V1 81	11 VI 81	3	91	Warrenton	5 S	153
Coho	79	07-21-30	Cascade	Big Creek	Columbia R.	6 V 91	11 VI 81	36	83	Warrenton	5 s	183
Coho	79	07-21-32	Cascade	Big Creek	Columbia R .	6 VII 81	12 VII 81	6	164	Cape Dis.	5 N	138
coho	79	07-21-32	Cascade	Big creek	Columbia R.	6 VII 81	18 VII 日l	12	198	Lincoln Eeach	80 S	150
Coho	79	07-22-56	Sandy	Cedar Creek	Columbia R.	1 val	20 V 81	19	30	Tillamook Rock	20 s	146
Coho	79	07-22-62	Sandy	Cedar Creek	Columbia R.	1 v 81	$20 \mathrm{vg1}$	19	30	Tillamook Rock	20 s	140
Coho	79	07-22-62	Sandy	Cedar Creek	Columbia R.	1 V81	20 v 81	19	30	Tillamook Rock	205	136
Coho	79	07-22-57	Sandy	Cedar Creek	Columbia R.	1 V 81	10 VI 81	41	77	Cape Dis.	5 N	190
Coho	79	63-21-06	Grays River	Grays River	Columbia R.	30 Iv 31	18 V 81	18	10	Newport.	97 s	159
Coho	79	63-21-06	Grays River	Grays River	Columbia R.	30 IV 81	20 V 81	20	30	Tillamook Rock	20 S	135
Coho	79	63-21-06	Grays River	Grays River	Columbia R.	30 IV 81	21 V 81	21	42	Warrenton	5 s	132
Coho	79	63-22-4.3	Grays River	Grays River	Columbia r.	30 IV 81	14 VII 81	75	183	Tillamook Rock	20 s	240
Coho	79	63-21-50	washougal ${ }^{\text {a }}$.	Washougal R.	Columbiar.	30 Iv ai	20 V 1	20	90	Tillamook Roek	20 s	134
Coho	79	63-21-51	washougal R.	Washougal F.	Columbia R.	27 v 81	10 VI Al	14	79	Capo Dis.	5 N	139
Coho	79	b3-22-03	Washougal R.	Washougal R.	Columbia R.	27 VaI	12 VIII 81	77	233 .	Tillamook Rock	20 s	256

Appendix E-1. Summary of coded wire tag recoveries for juvenile salmonids collected off oregon and washington during spring and summer 1981 (Preliminary Data).

 $\stackrel{9}{7}$坔 $\stackrel{\rightharpoonup}{-1}$ 복雷 $\stackrel{\leftrightarrow}{7}$ M $=$ \# : ~쿄
Appendix E- 1.

Summary of coded wire tag recoveries for adult salmonids collected off Oregon and Washington
during spring and summer 1981 (Preliminary Data).

TRAnsect
Leadbetter Pt.
Cape Dis.
warrenton
Newport
Leadbetter pt.
Newport
warrenton
Warrenton
Warrenton
Tillamook Rock
Warrenton
Cape Dis.
Newport
Warrenton
Cape Dis.
Warrenton
Warrenton
Tillamook Rock
Newport
Warrenton
Warrenton

Appendix E-2. Appendix E-2

[^0]: *ODFW, Oregon Dept. Fish \& Wildlife; WDF, Wash. Dept. Fisheries; OAF, Oregon Aqua Foods Inc.; ANAD, Anadromous Inc.; FWS, Fish \& wildlife Service; HOH, Hoh tribe; NMFS, Nat. Mar. Fish. Service; IDFG, Idaho Dept. Fish \& Game; CDFG, Calif. Dept. Fish \& Game

